Fit Moving Durchschnitt In R


V der prognostizierte Wert für die Perioden 1 bis T und v der Prognosewert zum Zeitpunkt t sein. Wir drücken v als Summe zweier Terme aus, deren Mittelwert zur Zeit t und deren Abweichung vom Mittel zur Zeit t, epsilon. Mit anderen Worten, v overline epsilon Die Overline wird auf der Grundlage der Argumente ausgewählt. Der Epsilon-Term wird als normalverteilte Zufallsvariable mit Mittelwert Null und Standardabweichung Sigma () 0,234 angenommen. Die gleitende Mittelwertbildung der Ordnung q wird gewählt, MA (q), wobei q die Anzahl der verzögerten Glieder im gleitenden Durchschnitt ist. Wir verwenden die folgende gleitende durchschnittliche Spezifikation: epsilon sum mu wobei mu unabhängig verteilte normale normale Zufallsvariablen sind. Um sicherzustellen, dass die Standardabweichung von t gleich ihrem voreingestellten Wert ist, setzen wir die alpha frac) Beachten Sie, dass epsilon t von q1 zufälligen Terme abhängt. Der R-Code, den ich für das obige Modell verwendet habe, frage ich mich, dass sich Alpha durch die Zeit ändert, die der Parameter für die Figur im Papier ist: Hinweis: MA (30), (31 Termini), Sigma (epsilon) 0.234, 31 initial Werte von mu0, 10.000 Simulation Bin ich fehlt jedes Ding gefragt 27.07.2011 um 14:57 Ihre Antwort 2017 Stack Exchange, IncChoosing die beste Trendlinie für Ihre Daten Wenn Sie eine Trendlinie zu einem Diagramm in Microsoft Graph hinzufügen möchten, können Sie eine beliebige Der sechs unterschiedlichen Trendstreckentypen. Die Art der Daten, die Sie festlegen, bestimmt die Art der Trendlinie, die Sie verwenden sollten. Trendline-Zuverlässigkeit Eine Trendlinie ist am zuverlässigsten, wenn ihr R-squared-Wert auf oder nahe bei 1. Wenn Sie eine Trendlinie zu Ihren Daten passt, berechnet Graph automatisch seinen R-Quadrat-Wert. Wenn Sie möchten, können Sie diesen Wert in Ihrem Diagramm anzeigen. Eine lineare Trendlinie ist eine am besten passende gerade Linie, die mit einfachen linearen Datensätzen verwendet wird. Ihre Daten sind linear, wenn das Muster in seinen Datenpunkten einer Linie ähnelt. Eine lineare Trendlinie zeigt in der Regel, dass etwas mit steiler Geschwindigkeit steigt oder sinkt. Im folgenden Beispiel zeigt eine lineare Trendlinie deutlich, dass der Umsatz der Kühlschränke über einen Zeitraum von 13 Jahren konstant gestiegen ist. Beachten Sie, dass der R-Quadrat-Wert 0.9036 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine logarithmische Trendlinie ist eine am besten passende gekrümmte Linie, die am nützlichsten ist, wenn die Änderungsrate der Daten schnell zunimmt oder abnimmt und dann abnimmt. Eine logarithmische Trendlinie kann negative und positive Werte verwenden. Das folgende Beispiel verwendet eine logarithmische Trendlinie, um das prognostizierte Bevölkerungswachstum von Tieren in einem festen Raum zu veranschaulichen, in dem die Population ausgeglichen wurde, als der Platz für die Tiere abnahm. Beachten Sie, dass der R-Quadrat-Wert 0,9407 ist, was eine relativ gute Passung der Zeile zu den Daten ist. Eine Polynom-Trendlinie ist eine gekrümmte Linie, die verwendet wird, wenn Daten schwanken. Es eignet sich zum Beispiel für die Analyse von Gewinnen und Verlusten über einen großen Datensatz. Die Reihenfolge des Polynoms kann durch die Anzahl der Fluktuationen in den Daten oder durch die Anzahl der Biegungen (Hügel und Täler) in der Kurve bestimmt werden. Eine Ordnung 2 Polynom-Trendlinie hat in der Regel nur einen Hügel oder Tal. Ordnung 3 hat im Allgemeinen ein oder zwei Hügel oder Täler. Auftrag 4 hat in der Regel bis zu drei. Das folgende Beispiel zeigt eine Polynomlinie der Ordnung 2 (ein Hügel), um die Beziehung zwischen Geschwindigkeit und Benzinverbrauch zu veranschaulichen. Beachten Sie, dass der R-Quadrat-Wert 0,9474 ist, was eine gute Übereinstimmung der Zeile zu den Daten ist. Eine Leistungs-Trendlinie ist eine gekrümmte Linie, die am besten mit Datensätzen verwendet wird, die Messungen vergleichen, die mit einer spezifischen Rate zunehmen, zum Beispiel die Beschleunigung eines Rennwagens in Intervallen von einer Sekunde. Sie können keine Power-Trendline erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel werden Beschleunigungsdaten durch Zeichnen der Distanz in Metern pro Sekunde dargestellt. Die Leistung Trendlinie zeigt deutlich die zunehmende Beschleunigung. Beachten Sie, dass der R-Quadrat-Wert 0,9923 ist, was eine nahezu perfekte Passung der Zeile zu den Daten ist. Eine exponentielle Trendlinie ist eine gekrümmte Linie, die am nützlichsten ist, wenn Datenwerte mit zunehmend höheren Raten steigen oder fallen. Sie können keine exponentielle Trendlinie erstellen, wenn Ihre Daten Null - oder negative Werte enthalten. Im folgenden Beispiel wird eine exponentielle Trendlinie verwendet, um die abnehmende Menge an Kohlenstoff 14 in einem Objekt zu veranschaulichen, während es altert. Beachten Sie, dass der R-Quadrat-Wert 1 ist, dh die Linie passt perfekt zu den Daten. Eine gleitende durchschnittliche Trendlinie glättet Fluktuationen in Daten, um ein Muster oder einen Trend deutlicher zu zeigen. Eine gleitende durchschnittliche Trendlinie verwendet eine bestimmte Anzahl von Datenpunkten (die von der Option Periode festgelegt wurden), sie mittelt sie und verwendet den Durchschnittswert als Punkt in der Trendlinie. Wenn Period beispielsweise auf 2 gesetzt ist, wird der Durchschnitt der ersten beiden Datenpunkte als erster Punkt in der gleitenden durchschnittlichen Trendlinie verwendet. Der Durchschnitt der zweiten und dritten Datenpunkte wird als der zweite Punkt in der Trendlinie verwendet, und so weiter. Im folgenden Beispiel zeigt eine gleitende durchschnittliche Trendlinie ein Muster in der Anzahl der über einen Zeitraum von 26 Wochen verkauften Häuser. Moving Averages in R Nach meinem besten Wissen hat R keine integrierte Funktion zur Berechnung der gleitenden Durchschnittswerte. Mit der Filterfunktion können wir jedoch eine kurze Funktion für gleitende Mittelwerte schreiben: Wir können die Funktion auf beliebigen Daten verwenden: mav (data) oder mav (data, 11), wenn wir eine andere Anzahl von Datenpunkten angeben wollen Als die Standard-5-Plotterarbeiten wie erwartet: plot (mav (data)). Zusätzlich zu der Anzahl der Datenpunkte, über die gemittelt wird, können wir auch das Seitenargument der Filterfunktionen ändern: sides2 verwendet beide Seiten, Seiten1 verwendet nur vergangene Werte. Teilen Sie diese:

Comments

Popular posts from this blog

Forex Trading Awesome Oszillator

Sell To Cover Aktienoptionen Beispiel

Bank Von Baroda Forex Karte Rate